Skip to content

Spectral Curves for Second‑Order Linear ODEs

For second‑order scalar ODEs there are three complementary notions of spectral curve:

  1. Classical/WKB (oper) spectral curve.
    Put the ODE in normal (Schrödinger) form ψ+T(z)ψ=0\psi''+T(z)\,\psi=0. The leading WKB relation S02=TS_0^2=T yields the algebraic curve

    Σcl: y2=T(z)\boxed{\,\Sigma_{\mathrm{cl}}:\ y^2 = T(z)\,}

    — a 2‑sheeted cover of the base Riemann surface. This is the “classical limit” (quantum curve viewpoint).

  2. Floquet (periodic) spectral curve.
    For y+V(x)y=λy-y''+V(x)\,y=\lambda y with VV periodic, the one‑period monodromy M(λ)M(\lambda) has eigenvalues μ±1\mu^{\pm1} and discriminant Δ(λ)=trM(λ)\Delta(\lambda)=\mathrm{tr}\,M(\lambda). The dispersion relation

    ΣFloquet: μ+μ1=Δ(λ)\boxed{\,\Sigma_{\mathrm{Floquet}}:\ \mu+\mu^{-1}=\Delta(\lambda)\,}

    encodes bands/gaps; for finite‑gap potentials this is hyperelliptic.

  3. Monodromy/character‑variety curve (Fuchsian problems).
    For a Fuchsian ODE on P1 ⁣ ⁣{zi}\mathbb P^1\!\setminus\!\{z_i\}, the monodromies MiSL2(C)M_i\in\mathrm{SL}_2(\mathbb C) satisfy algebraic trace relations (Fricke–Klein/Jimbo–Fricke). Fixing local conjugacy classes cuts out algebraic curves parametrizing accessory data.

In what follows, (1) is the backbone; (2)–(3) appear where illuminating.


1. From a second‑order ODE to the classical spectral curve

Section titled “1. From a second‑order ODE to the classical spectral curve”

1.1 Normal form and the projective connection

Section titled “1.1 Normal form and the projective connection”

Start from

y(z)+p(z)y(z)+q(z)y(z)=0,y''(z)+p(z)\,y'(z)+q(z)\,y(z)=0,

with p,qp,q meromorphic. Gauge away the first‑derivative term via

y(z)=exp ⁣(12 ⁣z ⁣p(ζ)dζ)ψ(z),y(z)=\exp\!\Big(-\tfrac12\!\int^z\! p(\zeta)\,d\zeta\Big)\,\psi(z),

to obtain the normal form

ψ(z)+T(z)ψ(z)=0,T=q12p14p2.\psi''(z)+T(z)\,\psi(z)=0,\qquad T=q-\tfrac12 p'-\tfrac14 p^2.

Here T(z)dz2T(z)\,dz^2 is a meromorphic quadratic differential. Define the classical spectral curve

Σcl: y2=T(z).\boxed{\,\Sigma_{\mathrm{cl}}:\ y^2=T(z)\,}.

1.2 Local exponents, accessory parameters, and TT

Section titled “1.2 Local exponents, accessory parameters, and TTT”

At a regular singular point z=ziz=z_i with local exponent difference θi\theta_i (i.e. solutions behave like (zzi)ρ±(z-z_i)^{\rho_\pm} with ρ+ρ=θi\rho_+-\rho_-=\theta_i), one has

T(z)=Δi(zzi)2+cizzi+holomorphic,Δi=1θi24.T(z)=\frac{\Delta_i}{(z-z_i)^2}+\frac{c_i}{z-z_i}+\text{holomorphic},\qquad \Delta_i=\frac{1-\theta_i^2}{4}.

The coefficients cic_i are accessory parameters; for nn singular points on P1\mathbb P^1 there are n3n-3 independent cic_i’s controlling the global monodromy.

1.3 Branch points and genus (Fuchsian case on P1\mathbb P^1)

Section titled “1.3 Branch points and genus (Fuchsian case on P1\mathbb P^1P1)”

For a second‑order Fuchsian ODE with nn regular singular points on the sphere:

  • TT has only double poles at those nn points and T(z)=O(z2)T(z)=\mathcal O(z^{-2}) at \infty;
  • generically, the finite zeros of TT are simple and they alone produce branching.

A divisor count yields B=2(n2)B=2(n-2) branch points. Hence the 2‑sheeted cover has genus

g(Σcl)=B21=n3.\boxed{\,g(\Sigma_{\mathrm{cl}})=\frac{B}{2}-1=n-3\,}.

So: hypergeometric (n=3n=3) g=0\Rightarrow g=0; Heun (n=4n=4) g=1\Rightarrow g=1; in general, g=n3g=n-3.

Remark. On a base of genus g0g_0, Riemann–Hurwitz gives g(Σ)=2g01+B2g(\Sigma)=2g_0-1+\tfrac{B}{2}.


2. Hypergeometric class: explicit TT and Σcl\Sigma_{\mathrm{cl}}

Section titled “2. Hypergeometric class: explicit TTT and Σcl\Sigma_{\mathrm{cl}}Σcl​”

Place singularities at z=0,1,z=0,1,\infty and write exponent differences (θ0,θ1,θ)(\theta_0,\theta_1,\theta_\infty). In normal form,

Thyp(z)=1θ024z2+1θ124(z1)2+θ02+θ12θ214z(z1).T_{\mathrm{hyp}}(z)= \frac{1-\theta_0^2}{4\,z^2} +\frac{1-\theta_1^2}{4\,(z-1)^2} +\frac{\theta_0^2+\theta_1^2-\theta_\infty^2-1}{4\,z(z-1)}.

Clearing denominators with Y=yz(z1)Y=y\,z(z-1) gives

Σhyp:Y2=P2(z),\Sigma_{\mathrm{hyp}}:\quad Y^2=P_2(z)\,,

where P2P_2 is a quadratic polynomial whose two simple zeros are the branch points. Thus Σcl\Sigma_{\mathrm{cl}} is a sphere (g=0g=0).

  • Rigid monodromy. There is no accessory parameter; specifying (θ0,θ1,θ)(\theta_0,\theta_1,\theta_\infty) fixes TT globally.
  • Algebraic special cases. When P2P_2 has a double root (discriminant 00), the curve degenerates and the monodromy becomes finite (Schwarz list).

3. Heun class: genus‑one spectral curve and the accessory parameter

Section titled “3. Heun class: genus‑one spectral curve and the accessory parameter”

Put singularities at z=0,1,a,z=0,1,a,\infty (with a0,1a\neq0,1) and exponents (θ0,θ1,θa,θ)(\theta_0,\theta_1,\theta_a,\theta_\infty). In the standard Heun form

y+(γz+δz1+εza)y+αβzqz(z1)(za)y=0,γ+δ+ε=α+β+1,y''+\Big(\frac{\gamma}{z}+\frac{\delta}{z-1}+\frac{\varepsilon}{z-a}\Big)y' +\frac{\alpha\beta\,z-q}{z(z-1)(z-a)}\,y=0,\qquad \gamma+\delta+\varepsilon=\alpha+\beta+1,

the normal‑form potential is

THeun(z)=s{0,1,a}1θs24(zs)2+s{0,1,a}cszs,scs=0.T_{\mathrm{Heun}}(z)= \sum_{s\in\{0,1,a\}}\frac{1-\theta_s^2}{4\,(z-s)^2} +\sum_{s\in\{0,1,a\}}\frac{c_s}{z-s},\qquad \sum_s c_s=0.

Here the single accessory parameter qq enters linearly in the csc_s. Clearing denominators with Y=yz(z1)(za)Y=y\,z(z-1)(z-a),

ΣHeun:Y2=P4(z),\Sigma_{\mathrm{Heun}}:\quad Y^2=P_4(z)\,,

with a quartic P4P_4 having four simple zeros: a genus‑one (elliptic) curve.

  • Moduli. For fixed (θ0,θ1,θa,θ,a)(\theta_0,\theta_1,\theta_a,\theta_\infty,a), varying qq moves the branch points of P4P_4 and changes the complex structure of ΣHeun\Sigma_{\mathrm{Heun}}.
  • Isomonodromy. Varying aa at fixed monodromy gives q(a)q(a) governed by Painlevé VI; geometrically, the elliptic curve varies isomonodromically.

4. Confluence: from regular to irregular singularities

Section titled “4. Confluence: from regular to irregular singularities”

Merging regular singularities produces irregular ones; the classical curve remains y2=T(z)y^2=T(z) but its asymptotics and branching at \infty change.

  • Confluent hypergeometric (Kummer). One regular singularity at 00 and a rank‑1 irregular at \infty; TT acquires higher‑order terms at \infty.
  • Confluent Heun variants. (Confluent, doubly confluent, biconfluent, triconfluent.) Each step raises the rank at \infty and modifies the branching (often introducing branching “at infinity” in the compactified picture).

In periodic/elliptic settings (e.g. Lamé/Mathieu), the Floquet spectral curve μ+μ1=Δ(λ)\mu+\mu^{-1}=\Delta(\lambda) is the natural object for the band/gap problem; for finite‑gap cases it is hyperelliptic of genus equal to the gap number.


5. How the three spectral curves fit together

Section titled “5. How the three spectral curves fit together”
  • Classical curve y2=T(z)y^2=T(z) is intrinsic to the scalar ODE in normal form; it controls WKB periods ydz\oint y\,dz, branch points, and genus (g=n3g=n-3 on P1\mathbb P^1). It is the spectral curve of a rank‑2 Hitchin system with quadratic differential ϕ2=Tdz2\phi_2=T\,dz^2 (quantization yzy\mapsto \hbar\partial_z returns the ODE: “quantum curve”).

  • Floquet curve is tailored to periodic spectral problems; it encodes the spectrum via the discriminant and is algebraic in finite‑gap cases.

  • Character‑variety curves organize monodromy: for n=4n=4 they are elliptic; the accessory parameter is a coordinate on that curve. Isomonodromic deformations (PVI) move the Heun branch points without changing monodromy.

They are different “projections” of the same global analytic structure: solutions live on branched covers of the base, with monodromy/Stokes/Floquet data algebraic on suitable ambient curves.


6.1 From an ODE to Σcl\Sigma_{\mathrm{cl}}

Section titled “6.1 From an ODE to Σcl\Sigma_{\mathrm{cl}}Σcl​”
  1. Normalize. Compute T=q12p14p2T=q-\tfrac12 p'-\tfrac14 p^2.
  2. Local exponents. At each regular singular ziz_i, solve the indicial equation; set Δi=(1θi2)/4\Delta_i=(1-\theta_i^2)/4.
  3. Assemble TT. On P1\mathbb P^1, T(z)=i=1n1Δi(zzi)2+i=1n1cizzi,ci=0,T(z)=\sum_{i=1}^{n-1}\frac{\Delta_i}{(z-z_i)^2} +\sum_{i=1}^{n-1}\frac{c_i}{z-z_i},\qquad \sum c_i=0, with n3n-3 independent accessory parameters among the cic_i.
  4. Define the curve. Σcl: y2=T(z)\Sigma_{\mathrm{cl}}:\ y^2=T(z). Clear denominators to write Y2=P2(n2)(z)Y^2=P_{2(n-2)}(z) with Y=y(zzi)Y=y\prod (z-z_i).
  5. Genus/branch points. Generically g=n3g=n-3; collisions of zeros of TT lower gg and signal special monodromy (algebraic solutions/apparent singularities).

With (θ0,θ1,θ)(\theta_0,\theta_1,\theta_\infty),

T(z)=1θ024z2+1θ124(z1)2+θ02+θ12θ214z(z1).T(z)=\frac{1-\theta_0^2}{4z^2} +\frac{1-\theta_1^2}{4(z-1)^2} +\frac{\theta_0^2+\theta_1^2-\theta_\infty^2-1}{4z(z-1)}.

Set Y=yz(z1)Y=y\,z(z-1) to get Y2=P2(z)Y^2=P_2(z) (genus 0).

With singularities at 0,1,a,0,1,a,\infty and exponents (θ0,θ1,θa,θ)(\theta_0,\theta_1,\theta_a,\theta_\infty),

T(z)=s{0,1,a}1θs24(zs)2+s{0,1,a}cs(q)zs,cs=0.T(z)=\sum_{s\in\{0,1,a\}}\frac{1-\theta_s^2}{4(z-s)^2} +\sum_{s\in\{0,1,a\}}\frac{c_s(q)}{z-s},\qquad \sum c_s=0.

Set Y=yz(z1)(za)Y=y\,z(z-1)(z-a) to get Y2=P4(z)Y^2=P_4(z) (genus 1). Varying qq moves the branch points; varying aa at fixed monodromy gives q(a)q(a) via PVI.


  • Regular/irregular singularity. Frobenius power‑law/log growth vs. Stokes/exponential growth.
  • Exponent difference θ\theta. If local exponents are ρ±\rho_\pm, then θ=ρ+ρ\theta=\rho_+-\rho_- and Δ=(1θ2)/4\Delta=(1-\theta^2)/4 in TT.
  • Accessory parameter. Coefficients of simple poles in TT; determine global monodromy for n4n\ge4.
  • Oper/quantum curve. Quantizing y2=T(z)y^2=T(z) by yzy\mapsto \hbar\partial_z yields the original ODE.
  • Character variety. Algebraic variety of monodromy representations; elliptic for four punctures.
  • Finite‑gap. Periodic Schrödinger potentials with algebraic Floquet curves.

  • Classical Fuchsian ODEs and monodromy: standard texts on complex ODEs and the Riemann–Hilbert problem.
  • Hypergeometric/Heun families: monographs on Heun’s equation and its confluent forms.
  • Hitchin systems and opers: reviews on spectral curves and quadratic differentials in integrable systems.